
Page 1

De-Generate

de-generate
Kahani Ploessl

ABSTRACT
de-generate is an experimental fighting video game that
explores how generative art may permeate as not only a
technological aesthetic, but an essential component in
gameplay and game evolution. This is primarily realized
through generative characters - shape shifting avatars that
maximize the capabilities of the digital realm. Characters and
their core structural code may be intercepted and facilitated
by the player, resulting in new, adaptive, and expressive
experiences.

1. INTRODUCTION
Digital reality is shaped by the interface - the nexus between
raw computation and human perception. While each may
interact and influence the other, their collaboration situates
the machine and operator firmly at opposite ends up the
screen. The division is explicit, and the resulting interface
performs predictably as mediator and translator for user
needs.

This pre-established separation of artificial and human
processing, restrains digital reality from realizing its full
potential. Digital reality and their modes of manifestation are
the next dimension - an extension of the physical plane to
realize oneself in complete immateriality. As an immensely
powerful tool, code capable of instantiating completely self-
contained and self-sustaining systems. In pursuit of digital
autonomy and expression, redefining interfaces so users may
tap into the power of code will play an important role in
redefining how digital reality is transversed. Interfaces that
push backend capabilities to the forefront will empower users
to shape their own digital experiences with flexibility,
sovereignty, and longevity.

Considering the enormous task, de-generate takes the first
step by positing a new and experimental dynamic between
code, data, and avatars. As the surrogate for digital existence,
the very form and movements of de-generate’s characters can
be computationally disrupted and exploited by real-time
events and player controls. Players may harness data and
code directly, challenging the interface in unexpected and
evolutionary ways.

In realizing this experimental concept, de-generate combines
generative approaches and video game environments as its
basis.

1.1 Generative Art - The Approach
Generative art is a form characterized by experienced
emergence. Overtime the piece reveals itself according to a
predefined logic system that responds to external factors.
While not a practice exclusive to technology, generative art
expressed through code is the perfect union. Not only is code
explicitly tied to function, but its fundamental components of

read, process, and execute are, in essence, what collectively
makes generative art. As such, manifestations of generative
art assimilate a sense of coded or digital existence. Upon
instantiation, generative art unfolds to the combined wills of
predestined rules and unpredictable participators. Tandem
relationships between the what and the how - results and
mode of fruition, machine and operator, backend code and
frontend interface - are exposed for observation and
experimentation. What emerges is pure evolution,
philosophically profound and experimentally informative.

Dissecting these notions further, de-generate exhibits
principles of generative art in not only the game as a whole,
but the individual characters themselves. More specifically,
characters are built as contained generative systems. Instead
of being coded to operate, characters are coded to exist. The
distinction here may seem obscure, but upon starting the
game, its ramifications become immediately apparent. de-
generate’s characters are coded so that their fundamental
components may be unpredictably altered alongside player
input. As the larger game comes in to play, this
generativeness is then immediately compounded by inter
character dynamics even more so unknown. The characters
and their coded constructs are merely capable of setting the
scene. What will emerge cannot be predicted, and will be
entirely a product of player choices.

1.2 Video Games - The Medium
The purposeful decision to explore generative techniques and
innovative digital identities within a video game plays an
integral role. Video games, as an interface, exhibits a
comprehensive system of interdisciplinary components and
real-time participation. As such, the generative themes of de-
generate can permeate into various aspects of the game
environments (aesthetic shaders, maps, character designs) no
matter how small or significant.

Interestingly, despite the considerable overlap that exists
between generative art and video games, these technological
mediums have rarely collaborated. Each involves real-time
collaboration between machine and operator actions as a
means of progression or evolution. What seems to
fundamentally distinguish the two is that while generative art
relinquishes control in pursuit of emergence, video games
rely on a highly structured frameworks and predefined game
beats to tailor specific gaming experiences. Diverging from
traditional form, de-generate explores how generative
discovery may replace simulated gaming dynamics with
actual, erratic computation - realtime manipulation of game
objects at the structural level.

Although video games may appear as rigid structures, their
subsequent player behaviour, social dynamics, and cultural
relevancy are, by no means, devoid of evolution. This is
known as the meta game, a phenomena in which players
adopt strategies and tactics outside the core gameplay
mechanics. Often involving exploitation of any and all

Page 1

weaknesses in the interface as a means for attaining some
goal or advantage, the meta game evolves endlessly
alongside continual player engagement. As long as the video
game can sustain player enjoyment, a meta game will always
emerge. In this sense, de-generate incorporates generative
techniques by relinquishing controlled game dynamics to the
emergence of a meta game. As generative art is intended to
be discovered, de-generate is designed to fully accept how
players embrace the system, even when that entails the
exploitation of what may be ‘wrong’ with the interface.

Combining these perspectives on unpredictable gaming and
meta game emergence, de-generate’s video game interface
can be viewed as the optimal testing environment. As a
digital construct, the generative experiment may be repeated
endlessly in a vacuum. All factors may be fully accounted
for, and the resulting data may be precisely recorded for
further analysis. Furthermore, as a fighting style game, de-
generate firmly places generative characters as its sole focus.

2. THEORETICAL CONTEXT
The theoretical context review identifies current arguments
concerning generative art, the role of code as a design
“contributor”, and the importance of real time generation in
user interactions.

2.1 Ten Questions Concerning
Generative Art
Ten Questions Concerning Generative Art explore several
probing questions into the implications of generative art. The
most relevant and interesting question concerns “Question 4:
What New Kinds of Art Does the Computer Enable”
(McCormack et al, 137). Here McCormack et al explains the
potential in harnessing computational power in manifesting
complex interactions. “Computer simulations allow the
building of ‘model worlds’ that permit the vivid realization
and expression of ideas and complex scenarios that are
impossible in other media” (McCormack et al, 137).
Continuing with this notion, generative art is more than an
autonomous process. It is the observation of a wholistic logic
system that dynamically adapt to new scenarios and human
input.

2.2 Emergence and Generative Art
Gordon Monro’s article proposes an evolved definition for
generative art as an experience of emergence. Endeavouring
to define the complex, Monro describes effective generation
as an amalgamation of surprise-wonder-mystery-autonomy.
Emergences is a process to be observed, a life of its own that
surpasses mere novelty through imaginative contexts and
adaptive interactions. This interpretation stresses a distinction
between generative art that is simply unknown and what is
wondrously enigmatic. Generative art has the potential for
real time play, and can be far more creative than algorithmic
visualizations.

2.3 The Generative Process, Music
Composition and Games
The Generative Process, Music Composition and Games, by
Nyssim Lefford, explores how video games provide an

excellent environment for analyzing the generative process.
Here Lefford argues that video games are capable of
establishing a controlled space for user testing, one with clear
mechanics, constraints, and user goals.

The context of this article involved generative music games
in which user’s could compose a series of samples.
Interestingly, throughout this analysis Lefford extends the
definition of generative processes to that of human
perception and decision making. A prominent reference to
this human and computational collaboration involves the
concept of generative strategy, in which templates guide user
experience and expression. Lefford explains that “generative
games that make use of a structural template or specify a
referent not only make the salience more apparent to both
creator and non-creator but do so while preserving a realistic
generative scenario” (131, Lefford).

Applying this notion to Generative Character Design, the
characters themselves act similarly to templates. Not only
does each character employ a different generative approach,
but it’s playability also provides an interactive guide into
how its processes may be utilized. Furthermore, deciding
which of these templates to use introduces a strategic
element. Players may choose which generative function to
wield.

3. METHODOLOGY
With generative art being a highly iterative process, de-
generate employs this methodology with a cyclical
development of prototyping, testing, and refinement.
Furthermore, considering the experimental subject matter,
iterative monitoring of what manifests within the game
environment is essential in understanding how generative
techniques may be used to redefine digital interactions.

3.1 Iterative Character Experimentation
While the iterative model typically refers to active user
testing, iterative experimentation through the development of
generative characters was equally essential. This primarily
involved back and forth assessment of a generative
techniques and their functional viability at each level of
production: abstract ideation, initial 3D formation, base
animations, generative moves, and inter character dynamics.

Currently, de-generate has completed phase one development
of its generative characters. At this stage, each character
embody employs a conceptual own unique take on
generative , and are realized through a collaboration between
simulated and computational effect. Characters have been
coded with a mixture of standard and generative moves that
dynamically react to one another.

3.2 User Testing
User testing will begin at GradEx 2023. Taking advantage of
the opportunity to have many people with varying gaming
familiarity, de-generate’s effectiveness in delivering
generative experiences and player enjoyment may be
thoroughly gauged. Considering that GradEx is an event,
user testing will be conducted causally, and will follow a line
of questioning indicated on the following page.

Page 2

1. How do players interpret generative motion?

- Are players adapting to gameplay?
- What characters are players choosing?

- Does a trend emerge?
- Are players having fun? Do they want to replay?

2. Are the controls adequately animating the character?

- What is being fulfilled, what isn’t?
- Can the generative functions go further?

3. What meta game emerge between characters?

- How are the characters interacting?
- Do glitches or disparities occur?
- Are certain characters vulnerable to others?

- Should this be compensate for, or adopted as
strategy?

- Are shortcoming in the game environment being
exploited by players?

4. PROJECT DEVELOPMENT
4.1 Game Environment and Character
Conceptualization
The core game environment was created with Unity and
fulfils the classic fighting game archetype with a character
selection menu, playable opponents, fighting maps, reactive
health bars, and an end game state.

Characters were first conceptualized through abstract
ideations and sketch work. These initial sketches visualized
potential motions or states with vague ideas on how they may
generatively perform. Early generative explorations had
inspired enough confidence for ideas to ruminate in the
project’s central theme of new digital emergence. Moving on,
characters were then formed and animated in Blender with
base movements including: idle, mobility (jump, run),
attacks, and damage states. Once uploaded to unity, each
character followed relatively standard frameworks for input
controls, animation controllers, and collider events.
Establishing the game’s interconnected environment of
objects, colliders, and controlling scripts early on allowed
subsequent experimentations to undergo immediate
implementation and continuous testing.

It was within this constructed environment where generative
deep dives could take place. When approaching each
character, the goal was to discover how their initial
conceptualization may be expressed by generative motions.
Furthermore, how could the pre-established template be
disrupted while still maintaining a functional role within de-
generate’s framework.

4.2 Dynamic Shaders
Dynamic shaders in Unity were the first method explored due
to its clearest visual connection to generative art. This highly
parallelized rendering tool allows object properties such as
colour, texture, and vertex distribution to be exaggerated and
triggered by in game events. Coded in HLSL, shaders are
generally comprised of vertex shaders, fragment shaders, or
some combination of the two. The former manipulates shape
properties by applying algorithmic motion to all vertices in a
mesh. Fragment shaders, on the other hand, apply surface
texture and patterns. These varying effects are illustrated by
de-generate’s initial explorations in Figure 2.

While dynamic shaders can respond to input controls and in
game events, their generative influence stop at surface level
aesthetics. Since shader are optimized for displaying graphics
efficiently across a material, building functions in relation to
quantifiable data is not possible. For example, colliders
cannot be updated or made to respond to shaders. Therefore,
shaders were used for amplifying generative themes and
other techniques in backgrounds, fighting maps (Figure 3),
and character materials (Figure 4 and 5). These shaders are
vital in conveying a sense of fluidity between digital objects
and character identities.

Page 3

Figure 1. Character Selection Menu. Left to right: rockerChic,
mushGang, hellBear, plasMan, slimeCat, metalMan, tulip,
swarmOfSquids

Figure 3. Map backgrounds with shaders, titled
renderPipeline, waterFall, shaderGarden, and watchfulEyes

Figure 2. Initial Shader Experiments

4.3 Mesh Deformations
The most successful generative approach involved mesh
deformations, a process in which an artificially instantiated
force is algorithmically applied to each and every vertex in a
mesh and thereby, the mesh collider. Applications of this
generative technique have considerable variability and can
range from simulating material physics to embodying
entirely experimental generative motions. A template C#
script and its public variables, as seen in Figure 6, was coded
to accommodate flexible usage and explorations. Here
variables fall into three main categories: force properties,
material physics, and experimental.

Force:
- Vector data: Magnitude, Direction, Speed
- Negative: sets wether the force attracts or repels vertices
- Bounded: sets deformation limit
- Expand: set wether the force affects furtherest or nearest

vertices

MateriaL Physics:
- Elasticity: how quickly vertices return to their origin
- Permanent: sets elasticity to 0, the vertices do not return
- Dampening: how quickly the velocity returns to 0
- Perpetual: sets dampening to 0, the velocity continues
- Spread Percent: how localized the deformation is
- Indent: sets the material as brittle
- Stretch: additional material stretching or compressing

Experimental:
- Spikey: effect 0-50% of vertices with even distribution
- Wave: oscillate displacement across the object’s surface
- Wobble: oscillates velocity across the object’s surface
- Crystal: experimental effect transforming mesh into

appearing geometric
- Power: exponential displacement

When developing characters with mesh deformations, this
template script was adapted to feature some combination of
the above variables in conjunction with controller inputs and
collider events. Furthermore, deformations were designed as
thoughtfully extensions to the character’s core generative
concepts with complimentary controller facilitation.

Page 4

Figure 5. plasMan vertex and fragment shader

Figure 4. slimeCat vertex shader

Figure 6. Mesh deformation template script’s public variables

4.3.1 metalMan
As the name implies, metalMan’s mesh deformations are
elementally inspired by the malleability of metal. This is
indicated by three main state features: sharp attacks, defence
armour, and reactive denting. Sharp attacks enabled by
Spikey at a randomly generated frequencies and force vectors
erupt from metalMan’s surface. Defensive armour, rapidly
expands a Bound enabled mesh, increasing defence but
drastically decreasing speed. And lastly, localized and semi-
permanent deformations achieved with a low Spread Percent
and Elasticity set to zero, occur in reaction to received
attacks. These new deformations may be utilized in regular
attack moves, but will disappear when the player switches to
another state.

4.3.2 plasMan
plasMan uses experimental mesh deformation variables for
visualizing chaotic plasmic energy. This effect, applied
abstractly to the outer body, is juxtaposed overtop a rigid
skeleton. Here generativeness is used for charging and
expelling bursts of energy. Player inputs may be stockpiled
into perpetual mesh deformations reused in energy attacks,
such as shooting plasma balls or energy bursts deformations.

4.3.3 rockerChic
rockerChic is the simplest generative character, with their
mesh deformation, the smashing of their guitar, performing
in reaction to the player’s own destruction. Upon entering the
opponent’s collider, the guitar breaks with a low Spread
Percentage, Elasticity set to zero, and Indent enabled,
meaning deformations are localized, permanent, and brittle.
The guitar’s acquired damage can then be reutilized in a
“rock out” move, in which rockerChic plays the guitar to
project a generative music attack.

4.3.4 slimeCat
slimeCat introduces generative authorship as a moldable
character. Here slimeCat’s shape can be squished, expanded,
and puddled to player liking, strategy, random generative
elements, or in reaction to in game events. Squishing applies

convex of concave deformations (depending on vector
direction). Expansion scales up slimeCat with ballooning
deformation. And puddle enables Wobble to melt slimeCat
into a hard to hit state. These deformations alter the backend
mesh and collider, enabling each transformation to redefine
how slimeCat interacts with other characters. For example, a
larger slimeCat may be more powerful and likely to land an
attack, however at this size, they’d also make an easier target.

4.4 Generative Spawns
Generative spawns use a series of real-time object
instantiations with algorithmic movements. Through the
totality of these objects, fluctuating surfaces emerged as
enigmatic structures to be utilized. Such movements are
autonomous to player controls, and therefor force the player
to adopt new strategies.

Character using generative spawns are still in development,
and will be included in hellBear, mushGang, and

Page 5

Figure 11. Mathematical Surfaces

Figure 7. metalMan

Figure 10. slimeCat

Figure 9. rockerChic

Figure 8. plasMan

swarmOfSquids. hellBear will spawn generative fire in the
form mathematical surfaces like Figure 11. mushGang will
spawn autonomous mushMinions. And swarmOfSquids
generates a mathematical surface populated with squids, in
which player controls involve toggling the algorithm’s
variables.

REFLECTION
At this stage, I am elated with de-generate’s project process.
Each character examines a new generative technique that, for
the most part, exemplifies de-generate’s themes well while
simultaneously functioning as needed. Mesh deformations
were also an especially fruitful exploration. metalMan,
plasMan, rockerChic, and slimeCat each embody a distinct
interpretation, and thereby present a good range of how
generativeness can inform digital bodies. Even still, these
characters are only just beginning to scratch the surface.

Next steps will involve finishing the generative spawn
characters. I am optimistic they’ll be up for GradEx,
especially given their fundamentally different approaches
would be really interesting in comparison and opposition.
Beyond this, the next technique explored will be a
combination of generative spawn and mesh deformation
principles. Here the idea is that instantiated spawns will be at
each vertex position of another mesh. This way, when mesh
deformations occur, vertex displacement can be clearly
registered.

6. REFERENCES
 Flick, Jasper. “C# And Shader Tutorials for the
Unity Engine.” Catlike Coding, Catlike Coding, https://
catlikecoding.com/unity/tutorials/.

 McCormack, Jon, et al. “Ten Questions Concerning
Generative Computer Art.” Leonardo, vol. 47, no. 2, 2014,
pp. 135–41. JSTOR, http://www.jstor.org/stable/43834149.
Accessed 9 Dec. 2022.

 Monro, Gordon. “Emergence and Generative Art.”
Leonardo, vol. 42, no. 5, 2009, pp. 476–77. JSTOR, http://
www.jstor.org/stable/40540082. Accessed 9 Dec. 2022.

 Lefford, Nyssim. “The Generative Process, Music
Composition and Games.” Leonardo, vol. 40, no. 2, 2007,
pp. 129–35. JSTOR, http://www.jstor.org/stable/20206374.
Accessed 9 Dec. 2022.

Page 6

Figure 12. swarmOrSquids

	INTRODUCTION
	1.1 Generative Art - The Approach
	1.2 Video Games - The Medium
	THEORETICAL CONTEXT
	METHODOLOGY
	PROJECT DEVELOPMENT

